Analyse complexe 02/04/2018 - 04/04/2018

TD 7: FONCTIONS ELLIPTIQUES

Aucun exercice à préparer à la maison dans cette feuille!

Exercice 1: Soient α , β des complexes non colinéaires, $\Lambda = \alpha \mathbb{Z} + \beta \mathbb{Z}$ le réseau correspondant. Soit f une fonction méromorphe sur \mathbb{C} , non constante, Λ -périodique (cela signifie par définition que f est à la fois α -périodique et β -périodique).

1. Montrer qu'il existe un complexe z_0 tel que f n'a ni zéros ni pôles sur le bord du parallélogramme

$$\{z_0 + x\alpha + y\beta | 0 \le x, y, \le 1\},\$$

et montrer que f a autant de zéros que de pôles, comptés avec multiplicités, à l'intérieur de celui-ci.

- **2.** Si S est une partie finie de \mathbb{C} et $n \ge 1$ un entier, montrer que l'ensemble des fonctions méromorphes sur \mathbb{C} , Λ périodiques et dont les pôles sont tous dans $S + \alpha \mathbb{Z} + \beta \mathbb{Z}$ et tous d'ordre $\le n$, est un espace vectoriel complexe
 de dimension finie.
- **3.** Montrer que lorsque S n'a qu'un élément et n = 1, on obtient seulement les fonctions constantes.

Exercice 2: On reprend les notations de l'exercice précédent.

1. Soit f une fonction méromorphe non identiquement nulle sur \mathbb{C} , Λ -périodique. Soit $\{z_1,...,z_k\}$ un ensemble de représentants modulo Λ de l'ensemble formé des zéros et des pôles de f, m_i l'ordre du zéro ou du pôle de f en z_i . On a vu dans l'exercice précédent que $\sum_i m_i = 0$. Montrer qu'on a aussi :

$$\sum_{i=1}^k m_i z_i \in \Lambda.$$

On pourra considérer la fonction $z\frac{f'}{f}$.

2. Réciproquement, on se donne $\{z_1,...,z_k\}\subset\mathbb{C}$ distincts modulo Λ , et des entiers $m_1,...,m_k\in\mathbb{Z}$ tels que :

$$\sum_{i} m_{i} = 0 \quad \text{et} \quad \sum_{i=1}^{k} m_{i} z_{i} \in \Lambda.$$

On va montrer qu'il existe une fonction méromorphe f comme dans la question précédente.

(a) Montrer que le produit de Weierstrass :

$$\sigma(z) = z \prod_{\lambda \in \Lambda \setminus \{0\}} \left(1 - \frac{z}{\lambda}\right) e^{z/\lambda + z^2/2\lambda^2}$$

définit une fonction entière σ dont l'opposé de la dérivée logarithmique $\xi = -\sigma'/\sigma$ vérifie :

$$\xi' = \wp$$
,

Ø étant la fonction de Weierstrass introduite dans le cours.

(b) Montrer qu'il existe des nombres complexes t_{α} , t_{β} tels que pour tout $z \in \mathbb{C} \setminus \Lambda$,

$$\xi(z+\alpha)=\xi(z)+t_{\alpha} \ \text{ et } \ \xi(z+\beta)=\xi(z)+t_{\beta}.$$

(c) Montrer qu'il existe C_{α} , $C_{\beta} \in \mathbb{C}^{\times}$ tels que pour tout $z \in \mathbb{C} \setminus \Lambda$,

$$\sigma(z+\alpha) = C_{\alpha}\sigma(z)e^{-t_{\alpha}z}$$
 et $\sigma(z+\beta) = C_{\beta}\sigma(z)e^{-t_{\beta}z}$.

(d) Montrer que la fonction :

$$f(z) = \prod_{i=1}^{k} \sigma(z - z_i)^{m_i}$$

convient.

Analyse complexe 02/04/2018 - 04/04/2018

Exercice 3: Soit $\tau \in \mathbb{C}$ tel que Im $\tau > 0$. Notons $\Lambda = \mathbb{Z} \oplus \tau \mathbb{Z}$. Rappelons qu'il existe un polynôme $Q(X) = 4X^3 - 60G_4(\tau)X - 140G_6(\tau)$ tel que pour tout $z \in \mathbb{C} \setminus \Lambda$,

$$(\wp'(z))^2 = Q(\wp(z)).$$

On note aussi $g_2(\tau) = 60G_4(\tau)$ et $g_3(\tau) = 140G_6(\tau)$.

- 1. Montrer que la fonction \wp' s'annule en $1/2 + \Lambda$, $\tau/2 + \Lambda$ et $(1+\tau)/2 + \Lambda$ et nulle part ailleurs, et que tous ces zéros sont simples.
- **2.** Montrer que si $z \in \mathbb{C} \setminus \Lambda$ est tel que $\mathcal{O}(z) = \mathcal{O}(1/2)$, alors $z 1/2 \in \Lambda$. Que dire de l'ordre d'annulation de $\mathcal{O} \mathcal{O}(1/2)$ en 1/2? Démontrer un résultat similaire pour $\tau/2$ et $(1 + \tau)/2$.
- **3.** En déduire que le polynôme *Q* a trois racines distinctes.
- 4. En déduire que la fonction holomorphe sur le demi-plan de Poincaré

$$\Delta: \tau \mapsto g_2(\tau)^3 - 27g_3(\tau)^2$$

ne s'annule pas.

5. Montrer que si $(x, y) \in \mathbb{C}^2$ est tel que $y^2 = Q(x)$, il existe $z \in \mathbb{C} \setminus \Lambda$, unique modulo Λ , tel que

$$(\wp(z),\wp'(z)) = (x,y).$$

On pourra s'intéresser aux zéros de $\wp - x$ et à leurs multiplicités.

6. Soit $z_0 \in \mathbb{C} \setminus \Lambda$. Déterminer les pôles de la fonction elliptique :

$$z \mapsto \wp(z+z_0) - \frac{1}{4} \left(\frac{\wp'(z) - \wp'(z_0)}{\wp(z) - \wp(z_0)} \right)^2$$

et la partie polaire en $-z_0$, et en déduire que pour tout $z \in \mathbb{C} \setminus \Lambda$ tel que $z \not\in \pm z_0 + \Lambda$,

$$\wp(z+z_0)+\wp(z)+\wp(z_0)=\frac{1}{4}\left(\frac{\wp'(z)-\wp'(z_0)}{\wp(z)-\wp(z_0)}\right)^2.$$

Exercice 4:

1. Montrer que si $\Lambda = \alpha \mathbb{Z} + \beta \mathbb{Z}$ où α et β ne sont pas colinéaires, il existe $\gamma \in \mathbb{C}^{\times}$ et τ dans le demi-plan de Poincaré tels que

$$\gamma\Lambda = \mathbb{Z} \oplus \tau\mathbb{Z}.$$

2. Montrer que la formule

$$j(\tau)=1728\frac{g_2(\tau)^3}{\Delta(\tau)}$$

définit une fonction holomorphe sur le demi-plan de Poincaré.

3. Soit τ dans le demi-plan de Poincaré. Montrer que si $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$, il existe $\gamma \in \mathbb{C}^\times$ tel que $\mathbb{Z} \oplus \frac{a\tau + b}{c\tau + d}\mathbb{Z} = \gamma(\mathbb{Z} \oplus \tau \mathbb{Z})$. En déduire que :

$$j\left(\frac{a\tau+b}{c\tau+d}\right)=j(\tau).$$